Questions

1. Solve for x when $\frac{2}{3}x = \frac{1}{15}x + \frac{3}{5}$.

2. Solve for x when $\frac{x}{2} + \frac{x}{5} = \frac{7}{10}$.

3. Solve for x when $20 - \frac{1}{3}x = \frac{1}{2}x$.

4. Is 4 a solution to $\frac{1}{2}(y - 2) + 2 = \frac{3}{8}(3y - 4)$?

5. Solve for x when $0.3x - 0.2(3 - 5x) = -0.5(x - 6)$.

6. Solve for x when $\frac{4}{5}x - \frac{2}{3} = \frac{3x + 1}{2}$.

7. Solve for x when $\frac{4}{7}x + \frac{1}{3} = \frac{3x - 2}{14}$.

8. Solve for x when $-1 + 5(x - 2) = 12x + 3 - 7x$.

9. Solve for x when $9(x + 3) - 6 = 24 - 2x - 3 + 11x$.

Solutions

1. The LCD (lowest common denominator) is 15, so multiply the equation by 15 to remove the fractions.

 \[
 \frac{2}{3}x = \frac{1}{15}x + \frac{3}{5} \\
 15 \cdot \left(\frac{2}{3}x \right) = 15 \cdot \left(\frac{1}{15}x + \frac{3}{5} \right) \\
 10x = 15 \cdot \frac{1}{15}x + 15 \cdot \frac{3}{5} \text{ distribute!} \\
 10x = x + 9 \text{ simplify} \\
 10x - x = x + 9 - x \text{ addition principle} \\
 9x = 9 \text{ simplify} \\
 \frac{1}{9} \cdot 9x = \frac{1}{9} \cdot 9 \text{ multiplication principle} \\
 x = 1 \text{ simplify}
 \]

2. LCD is 10.

 \[
 \frac{x}{2} + \frac{x}{5} = \frac{7}{10} \\
 10 \cdot \left(\frac{x}{2} + \frac{x}{5} \right) = 10 \cdot \frac{7}{10} \\
 10 \cdot \frac{x}{2} + 10 \cdot \frac{x}{5} = 7 \\
 5x + 2x = 7 \\
 7x = 7 \\
 \frac{1}{7} \cdot 7x = \frac{1}{7} \cdot 7 \\
 x = 1
 \]

3. LCD is 6.

 \[
 20 - \frac{1}{3}x = \frac{1}{2}x \\
 6 \cdot \left(20 - \frac{1}{3}x \right) = 6 \cdot \frac{1}{2}x \\
 6 \cdot 20 - 6 \cdot \frac{1}{3}x = 3x \\
 120 - 2x = 3x \\
 120 - 2x + 2x = 3x + 2x \\
 120 = 5x \\
 \frac{1}{5} \cdot 120 = \frac{1}{5} \cdot 5x \\
 24 = x
 \]
4. You could substitute \(y = 4 \) to check, but I am going to solve it instead. LCD is 8.
\[
\frac{1}{2}(y - 2) + 2 = \frac{3}{8}(3y - 4)
\]
\[
8 \cdot \left(\frac{1}{2}(y - 2) + 2 \right) = 8 \cdot \frac{3}{8}(3y - 4)
\]
\[
8 \cdot \frac{1}{2}(y - 2) + 8 \cdot 2 = 3(3y - 4)
\]
\[
4(y - 2) + 16 = 9y - 12
\]
\[
4y - 8 + 16 = 9y - 12
\]
\[
4y + 8 = 9y - 12
\]
\[
4y + 8 - 9y - 8 = 9y - 12 - 9y - 8
\]
\[
-5y = -20
\]
\[
\frac{1}{5} (-5y) = \frac{1}{5} \cdot (-20)
\]
\[
y = 4
\]

5.
\[
0.3x - 0.2(3 - 5x) = -0.5(x - 6)
\]
\[
0.3x - 0.6 + x = -0.5x + 3
\]
\[
1.3x - 0.6 = -0.5x + 3
\]
\[
1.3x - 0.6 + 0.5x + 0.6 = -0.5x + 3 + 0.5x + 0.6
\]
\[
1.8x = 3.6
\]
\[
\frac{1}{1.8} \cdot 1.8x = \frac{1}{1.8} \cdot 3.6
\]
\[
x = 2
\]

6. LCD is 30.
\[
\frac{4}{5}x - \frac{2}{3} = \frac{3x + 1}{2}
\]
\[
30 \cdot \left(\frac{4}{5}x - \frac{2}{3} \right) = 30 \cdot \frac{3x + 1}{2}
\]
\[
30 \cdot \frac{4}{5}x - 30 \cdot \frac{2}{3} = 30 \cdot \frac{1}{2} (3x + 1)
\]
Note in above I wrote \(\frac{3x + 1}{2} \) as \(\frac{1}{2} \cdot (3x + 1) \). Doing this helps reduce errors!
\[
24x - 20 = 15 \cdot (3x + 1)
\]
\[
24x - 20 = 45x + 15
\]
\[
24x - 20 - 45x + 20 = 45x + 15 - 45x + 20
\]
\[
-21x = 35
\]
\[
\frac{1}{-21} \cdot (-21x) = \frac{1}{-21} \cdot 35
\]
\[
x = \frac{35}{21} = \frac{5}{3}
\]

7. LCD is 42.
\[
\frac{4}{7}x + \frac{1}{3} = \frac{3x - 2}{14}
\]
\[
4 \cdot \frac{4}{7}x + \frac{1}{3} = \frac{1}{4} (3x - 2)
\]
\[
42 \cdot \left(\frac{4}{7}x + \frac{1}{3} \right) = 42 \cdot \frac{1}{4} (3x - 2)
\]
\[
42 \cdot \frac{4}{7}x + 42 \cdot \frac{1}{3} = 3(3x - 2)
\]
\[
24x + 14 = 3(3x - 2)
\]
\[
24x + 14 = 9x - 6
\]
\[
24x + 14 - 9x - 14 = 9x - 6 - 9x - 14
\]
\[
15x = -20
\]
\[
\frac{1}{15} \cdot 15x = \frac{1}{15} \cdot (-20)
\]
\[
x = \frac{-20}{15} = -\frac{4}{3}
\]

8.
\[
-1 + 5(x - 2) = 12x + 3 - 7x
\]
\[
-1 + 5x - 10 = 5x + 3
\]
\[
5x - 9 - 5x = 5x + 3 - 5x
\]
\[
-9 = 3
\]
We have to interpret what we have found. Since -9 never equals 3, the equation is never true no matter what value of \(x \) we put in. This means the equation has no solution.

9.
\[
9(x + 3) - 6 = 24 - 2x - 3 + 11x
\]
\[
9x + 27 - 6 = 21 + 9x
\]
\[
9x + 21 = 21 + 9x
\]
\[
9x + 21 - 9x = 21 + 9x - 9x
\]
\[
21 = 21
\]
We have to interpret what we have found. Since 21 is always equal to 21, the equation is true for any value of \(x \) that we try. Therefore, there are an infinite number of solutions.